Tetrahedron Letters No. 44, **PP 3895 -** 3898, 1977. Pergamon Press. Printed in Great Britain.

CARBON-13 AND HYDROGEN-l NMR STUDIES OF CONFORMATIONS OF LIGULAROL AND 6-EPILIGULAROL, NATURALLY OCCURRING cis-DECALIN DERIVATIVES

Toshichika Sato, Masahiro Tada and Takeyoshi Takahashi* Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113 Japan

and

Isao Horibe, Hiroshi Ishii and Kazuo Tori*

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

(Received in Japan 22 August 1977; received in UK for publication 19 September 1977)

cis-Decalin derivatives can adopt two alternative chair-chair conformations, commonly termed "steroid-like" (B) and "non-steroid-like" (A) conformations. In a previous paper, $^{\rm l}$ we presented evidence for the presence of an equilibrium between the two conformations in naturally occurring cis-decalins, ligularone 2 and ligularol acetate. $^2\,$ As a further extension of this study, we examined variable-temperature 13 C as well as $^{\rm 1_H}$ NMR spectra of ligularol (1) $^{\rm 2}$ and 6epiligularol (2), 2 and found that they also exist as two conformational isomers in solution and that their conformational ratios are significantly affected, even reversed in the former (1) , by the concentration and the solvent employed. The latter interesting phenomena are reported here; we attempt to explain them by the difference in the hydrogen-bonding mode.

Low-temperature 13 C NMR (FIG. 2a) as well as 1 H NMR spectra (FIG. 1d) in acetone-d₆ showed two sets of signals in a ratio of 2.3:1 (see the TABLE). These suggested that two conformers of 1 coexist in solution. Conformations of the isomers were assigned by the low-temperature ¹H NMR spectra in acetone-d₆ to which small amounts of D₂0 had been added; at 35°, the broad H-6 α signal appeared at $\delta_{\rm u}$ 4.71 (FIG. la), but at -90°, it turned into a pair of signals, a broad singlet at $\delta_{\rm H}$ 4.95 (W_{1/2} = <u>ca</u>. 6 Hz: axial proton)⁻ and a relatively sharp singlet at 4.36 (W_{1,2} = $ca.$ 2 Hz: equatorial proton)^{*} in a ratio of 2.3:1 (FIG. lc). Therefore, the former H-6a should result from the "non-steroid-like" conformer and the latter from the "steroid-like" one, as in the case of ligularol acetate. $^{\mathrm{l}}$ Consequently, the more abundant conformer in acetone was classified as "non-steroid-like" (A).

In a similar manner, low-temperature 13 C and 1 H NMR spectra of 2 in acetone-d₆ (FIG. lh) showed two sets of signals in a ratio of 3.2:1 (see the TABLE). In the 1 H NMR spectrum of 2 in acetone-d₄-D₂⁰ at -70°, the H-6^{β} signals at δ _H 4.50 (W_{1/2} = ca. 6 Hz) and 4.20 (W_{1/2} = $ca. 3$ Hz) in a ratio of about 1:3 indicated that the "non-steroid-like" conformer was the major one. The

conformation

FIG. 1. Variable-temperature ¹H NMR spectra of 1 and 2 at 60 MHz (shown in part).

FIG. 2. Low-temperature 13 C FT NMR spectra of ligularol (1) at 15.087 MHz.

are for the minor conformer B (ratio, 2.3:1). ^d Values in square brackets are for LIS (in ppm) obtained from the shift curves. b Values in parentheses are for the minor conformer A (ratio, 1.3:1). ^C Values in parentheses e The minor conformer was not detected. f Values in parentheses are for the minor conformer B (ratio, 3.2:1). 8 Slow inver- $\binom{0}{0}$. FT measurement conditions were: spectral width, 3923 Hz; pulse flipping angle, ca. 16°; acquisition time, 0.6 sec; O NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz using TMS as an internal reference sion was not observed down to -100°. h-j Assignments may be reversed. K Not assignable. number of data points, 4820.

concentration did not affect the isomer ratios both in 1 and 2 .

Variable-temperature NMR spectra of both compounds were further examined in less polar solvents (see the TABLE). The 13 C NMR spectrum of 1 in CD₂C1₂ at -70° surprisingly showed that "steroid-like" conformer B is the major one in a ratio of 1.3:1 at a high concentration (200 $mg/cm³$) (FIG. 2b). However, the ratio of the "non-steroid-like" conformer was increased by diluting the solution (100 mg/cm³). In ¹H NMR in CS₂-CDC1₂ (2:1) (30 mg/cm³), the "non-steroidlike" conformer was also more abundant in a ratio of 1.3:1. On the other hand, 2 was found to predominantly adopt the "non-steroid-like" conformation in these solvents, because signals corresponding to the minor conformer were not observed below -60" (see the TABLE).

These observations suggest that in both 1 and 2 , intermolecular hydrogen bonding between solute molecules plays a significant role in determining the equilibrium ratios between the two conformers. The preferred conformer B of $\frac{1}{\epsilon}$ having a quasi-axial-OH in CD₂C1₂ as well as $CS₂-CDCI₃$ could be intermolecularly hydrogen-bonded with other solute molecules in the same conformations more easily than the minor conformer A having a quasi-equatorial-OH. 3 However, in acetone-d₆, 1 should be preferably hydrogen-bonded with a smaller acetone molecule in conformation A. On the other hand, the predominant conformer A of 2 in CD_2CL_2 or CS_2 -CDC1₃ may be very stable and not influenced by the concentration. However, in acetone, only a small population of the "steroid-like" conformer having a quasi-equatorial-OH was found, probably due to its strong hydrogen bonding to the solvent molecules. An attempt to find which conformer is preferred for furanoeremophilane (3) using variable-temperature 13 C NMR down to -100° was not successful, because the ΔG^{\dagger} value is much smaller for 3 (see the TABLE).

The ¹³C signals were assigned in CDC1₃ using known chemical shift rules, several ¹H decoupling techniques, ⁴ and chemical-shift comparisons from compound to compound. Lanthanoidinduced shifts (LIS) for 2 obtained from shift curves using $Yb(fod)$ ₃ were particularly useful for this purpose (see the TABLE). The chemical shifts assessed for the conformers at low temperatures agree with their stereochemical relationships.

REFERENCES

- (1) M. Tada and T. Takahashi, Tetrahedron Lett. 5169 (1973).
- (2) H. Ishii, T. Tozyo and H. Minato, Tetrahedron 21 , 2605 (1965).
- (3) The presence of intermolecular hydrogen-bonding was confirmed by IR for $\underline{1}$ in the same solvents under the conditions (0.1-0.8 M solutions) described above.
- (4) K. Tori, M. Ueyama, I. Horibe, Y. Tamura and K. Takeda, Tetrahedron Lett. 4583 (1975).